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ABSTRACT

A stochastic model describing small eye movements occurring

during steady fixation on a stationary target is presented. Based on

eye movement data for steady gaze, the model has a hierarchical
structure; the principal level represents the random motion of the
image point within a local area of fixation while the higher level mim-
ics the jump processes involved in transitions from o,ie local area to
another. Target image motion within a :t. al area is described by a
Langevin-like stochastic differential ec,^ Aion taking into considera-
tion, the microsaccadic jumps pictured as being due to point processes
and the high frequency muscle tremor, represented as a white noise.
The transform of the probability density function for local area motion
is obtained, leading to explicit expressions for their means and mo-
ments. Evaluation of these moments based on the model are com-
parable with experimental results. A physiologically based criterion
for the occurrence of local area changes is assumed and the renewal
density of these transitions is obtained. These transitions are brought
about by the occurrence of large saccades. Hence, our analysis leads
us to derive expressions for the mean and moments of the occurrence
of large saccades in a given time T. These predictions may be
checked against experimental results.
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A STOCHASTIC MODEL FOR EYE MOVEMENTS
DURING FIXATION ON A STATIONARY TARGET

I, Introduction and Background

System models of human eye movement control in the past: t'ave

been concerned with eye movements in response to the tracking cti .:".^ 'v -

ing targets [ 1, 2, 3 ] . Most of these models have involved partitioning

of the controller into two subsystems, one for smooth eye movements

and another for rapid saccadic changes in eye position. Investigations

of eye movement during fixation have not, to the authors' knowledge,

been treated in terms of a quantitative model as have eye movements

during tracking tasks. The major emphasis of fixation experiments

has been to treat the eye movement data as a time series and analyze

it via classical statistical methodology. We decided to first a;.-,amine

the more basic phenomenon of eye movements with a steady fixation

point as the target. In this mode of operation the eye is not motion-

,	 less; in fact, a small amount of eye movement L4,51 is apparently

necessary for transmission of visual -*__.cages.

A schematic diagram of the eye during viewing of a stationary

target is shown in Fig. 1. The fovea is an anatomically distinct por-

tion of the retina subtending a 2 degree circle of visual field. The

eyeball is moved by forces applied via the six extraocular muscles

not shown. Our interest here is to study the motion of the retinal

image of the targetduring visual fixation. Based on studies during

fixation, eye movements have been classified into three distinct types

a) microsaccades these are rapid step-like changes in eye

position averaging 6 minutes of arc in amplitude.

b) drift 1 : these low frequency eye movements average 5

minutes of arc in amplitude with rates of 1 minute of arc

per second.

c) trerrmort this refers to very high frequency oscillations

in eye movement ranging from 5-15 seconds of arc in	 `sx
amplitude at frequencies from 30-80 Hz.

1 The physiological term drift indicates all slow eye movements after
removal of the microsaccade and tremor components.
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The measurement of these small movements during fixation have
been reported by several investigators [6, 7, 8, 9, 101. The implications
of their work and particularly that of Boyce [ l l I were indispensable in
our formulating a structure for eye movement control during steady
gaze.

Experiments designed where the target moves synchronously with
eye position thereby maintaining a stabilized image [4, 5, 12 ] have dem-
onstrated that s .nall eye movements are necessary for continuous per-
ception of a fixed target. This intriguing evidence of a requirement for
movement during fixation leads to the question of how the system gen-
erates these movements. Nachmias [7] discusses a relationship be-
tween drift and microsaccades; his findings are in accord with those of
Cornsweet [ 10] in proposing that a proportion of the microsaccades are
movements that compensate for involuntary drift.

The recent work of Boyce [ 11 1 proves to be very significant.
His analysis of two dimensional data time series revealed the following
characteristics:

a) Recordings of eye position during gaze can be subdivided into
a succession of time periods. During each of these short-
period fixations, the retinal target image is projected to a
discrete portion of the retina, henceforth referred to as a
local area.

b) Saccades during gaze at a stationary target have one of two
functions: (i) to move the retinal target image suddenly
within the local area, or (ii) to move the image to a new
local area.

Based on these characteristics, Boyce proposed a qualitative
"organizational model" of the system. The successive local areas are
presumably contained entirely within the fovea where the highest degree
of visual acuity is attained and receptor elements of the retina are most
densely packed. In Fig. 2 a representation of target image on the fovea
during a period of f,*.xation on a motionless target is shown. The purpose
of the next section is to incorporate the above mentioned qualitative prop-
erties of eye mov ,:^ra =_ rfs into r-awit ; taf:lve stochastic model of this neu-
rological control system.
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II. Eye Movement Model: Formulation of the Structure
The structure of the model proposed here is derived on the basis

of the concept of local areas of fixation. It is a quantitative version of
the earlier simulation model proposed by Smith and Phatak C 13 1. The

model has a hierarchical configuration with: (1) a principal level that
simulates eye movements within a local area of fixation and (2) a higher
level that mimics the jump process from one local area to another. The
model is developed for application across a one-dimensional visual field
in order to keep the analysis tractable and easy to follow. Extension to
a two-dimensional visual field can be implemented easily.

A. Model for Local Area
It is apparent that in modeling eye movements within a local area

one must consider the drift, tremor and only those microsaccades that
occur and stay within the local area. The motion of the target image
within a local area of fixation may be modeled very simply by a position

control system as shown in Fig. 3.
In Fig. 3, e(t) is the error signal in degrees and F O (t) is the net

force applied to the eyeball in grams. This net force F O (t) is the sum

of three forces: (1) the restoring force ke, due to the position control
loop, (2) the tremor force, F 1 (t), modeled as a white noise and (3) the
saccadic impulsive forces, F 2 (t) , represented as arising from a sto-
chastic point process. In this representation drift is only the compen-
satory movement due to the position control loop. It is also assumed
here that there is no bias drift caused by the geometry of the experiment
and/or anatomical considerations. The reference point 0ref for the posi-
tion control system is taken as the center of the local area of fixation.
The plant is represented as the muscle-eyeball dynamics, which have
been modeled in the literature by a number of investigators [14, 15, 16, 17].
An adequate model for our purpose is that due to Robinson [ 151. It re-
lates eye position 0(t) to applied muscle force F O (t) by a fourth order

linear differential equation. The corresponding transfer function is given

by

(1)	 F (s)	 G(s) -	 (.667)(1+.2149)
0	 (1+.3s)(1+.0604s)[1+.00481s+1.03 x 10-592]

7



4

The retinal gain k is fixed at unity.
The model in Fig. 3 can be further simplified by writing an equiva-

lent open loop version as shown in Fig. 4. In Fig. 4:

(2) 6(s)	 _G s	 8.07(s + 4.56)
0(s) - 1 + kG(s)	 (s + 3.8)(s + 24.2)

which can be further approximated as

® 
ts)	

kl	 =	 9.7(3) 
,	 s +	 s + 24.2^0 

The corresponding differential equation is

(4) 0 (t) _ —P G(t) + k 1 F U (t)

For convenience, we rewrite (4) after scaling as

(5) 6 (t) _ — P 0(t) + G 1 (t) + G2 (t)

where

(6) G1(t) = k 1F 1 (t), G2 (t) = k1F2(t)

are equivalent displacement inputs per unit time.
B. Equation of Motion
Our objective is to study the Langevin type equation (5) and solve

for the probability density function (p . d . f .) , n (6 , t 1 0 0 19 0) , for target
image motion within a local area. This leads us to the evaluation of
moments relating to random motion inside a local area which can be
checked experimentally, subject to the model limitations.
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a

In equation (5) we are treating a one- dimensional model in which
`	 the continuous random variable 0(t) is subjected to the following types

of variations:
a) The change due to the drag term —P 0, where 0 is akir. to

a friction coefficient.
b) The microsaccadic impulses which occur as independent ran-

dom events in time contribute to changes in 0 by amounts
y governed by a known p. d. f . CP(y) .

c) The high frequency tremor contributes a white noise com-

ponent to the fluctuations in 0.
The random motions of 0 in time t are similar to that of a Brownian
particle whose changes of position are that due to a white noise convo-
luted wit' contributions arising from a point process.

In equation (6) G 1 possesses the following properties:

<G 1> = 0

(7)
<G1(t)G1(t')> = D b (t — t') ,

where D is the covariance of G 1 . The microsaccades are modeled
herein to occur with a p.d.f. of poisson intensity A. They cause a
jump from 0 to 0 +y where the random variable y is governed by a
p . d . f . CP (y) at all times.

The next section deals with the method of solving for the condi-
tional p.d.f. n(0, t10O10).

III. The Equation for n (0, t 10 0 0  0)

It is customary to write fokker planck equations for p. d . f .

TT (0,t 10 0 ,0) corresponding to the equation (5) in the absence of the
point process represented by G 2 (t). In the present case, however,
we can still write the partial differential equation for n(0, t 100 , 0)

by standard probability arguments. Since the G 1 process is of high
frequency we can write for the changes in 0 in a time (At) caused
by G 1 alone as
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` t+\.i

(8) M(®) =	 G1 dt

t

and it is easy to see that in view of equation (7)

4 CM(A) I = 0

(9) and

A- 0

Arguing out the changes that can take place in a time 6, we have  for
rr (0 0

(10) n (6,t) = ( l _% o)rr (6 + Pea — M(A),t—,&)

CO

+ 	 n (e-e 1 ,0 rp (e1)de1 .
cc

Using Taylor series expansion for the right-hand side of (10)

and taking the limit when A 0 .. we have

(11) d ^8 t = ^8 ^n e t + Rn(0,t) + D d 2rr 8 t — ^rr(e,t)t	 e	 2	 21 0 2

+ X. 	7T(e-81,t)CP(e1 )d01;

—Go < 0< CO

`We will hereafter write 17 (e,t (8 0 , 0) as n (6,t) for convenience.

w



with the boundary conditions represented by

rr(0,0) = 8(0-00)

(12)

TT (—co t) = TT (CO ,t) _ 0 .

We can apply t43 transform technique to solve equation (11) . Vefining

the fourier transform for n (0,t) with respect to 0 as

CO,
(13) (w, t) =	 rr (0,t)®iw0 d0

CO

We arrive at the following, assuming 0 0 = 0;

(14) a—TT w t) + w 2n w t _ - Dw2 _ (l  (v,) n (w, t)
at	 caw	 , 2

where TP(w) is the fourier transform of ^O(y) . The initial conditions are

(15) 17 (w, 0) = 1;	 n (0 .. t) = 1 .

The partial differential equation (14) can be solved by the method of

characteristics and this leads to the following:

(16) (w, t) = exp	
2

o- ^ (i—a -2pt) + [F(we—Pt)—F(w)d
I

where

w
(17) F(w) =	 1wow dw'

0
The inverse fourier transform of (16) will yield n(O,t) which we are

seeking. However, this is difficult to obtain by analytic methods for



.

r►')(y) represented by either a gaussian or a bimodal p.d.f. which are of

practical interest. We can of course obtain the inverse by numerical

methods. Since n (w,t) is the characteristic function of the stochastic

process 0(t) we can easily evaluate the morrtents of 0(t) corresponding

to the motion in each local area. Equation (16) makes it clear that if

X = 0, we have the characteristic function corresponding to the usual

Uhlenbeck-Ornstein process [181. A further analysis of this charac-

teristic function leads us to relate in a simple manner the cumulants

of the proce ss G(t) to the moments of the p . d . f . P(y) suitably scaled

by X/P. This relationship can be stated as a theorem.

Theorem. It the process 0(t) is governed by a Langevin type of equa-

tion as described by (5), the cumulants K n of 0(t) are given by

rn
(18)	 Kn = Un +	 nn ( 1 — a —nRt) n= 1,2,...

where the U  are the cumulants of the Uhlenbeck-Ornstein process

0(t) obtained in the absence of the poisson input process represented

by G2 in (5) and the m  are the moments of the p.d.f. P(y) govern-

ing the contributions from the poisson process. Of course, it is well

known that

U2 DD (I—e - 20t for n = 2

(19)	 and

U =0	 n ^ 2n

To prove the above statement we rewrite the expression
[F(we — Pt) — F(w) ] appearing in (16) in terms of the moments of CP(y) .

In view of (17) we have



00

(24)	 [F(we— ot)-F`(w)] = 
Z

\ 1 rr mr( 1-e—rot)
r=1

If we designate In n (w,t) as M (w,t) we know that the cuniulants are
given by

(21)	 a an ^	 1{n .
1 aW w=0

Hence

M
(22) Kn =	 (1—e-2ot)$n' 2 +.k  

nn (1—e—not)

where 8n ^ 2 is the kronecker delta. Once the cumulants are obtained
it is easy to derive the moments by employing the well - known relations
between them.

The experimental data indicate that the occurrence times of
A.

microsaccades have a p . d.f. that may be approximated by a poisson
process and that CP(y) corresponds to a bimodal p.d.f. given by

(23) c(y) = 22 Iy ( e -a l y I

Corresponding to this situation the characteristic function n (w, t) is:

2	 2	 2
Dw	 a	 w	 — 2 pt

—	
Exp_ 2^3 

+ ^ 2 a`̂ +w2 1+e
-2St 

+woe
-2pt (1—e	

)(24) n (wit>=

CL 2 + 
w2 	 2P

OL2 + W2 a-2St
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and the first two moments of 0(t) for the local area motion are given by

< 8 (t) > = 0

(25) M
< 02 (t) > 	 (1—a -2

R̂
 ) +	 22 (1—a-20t)

with m2 = 4/CL 2  .
Higher order moments may be computed if necessary. These

features regarding the local area motion can be checked with the ex-
perimental findings as discussed in Section V.

IV . The Large Sac cades and Reference Change
It will be our aim to bring into the framework of our model the

phenomenon of reference changes that occurs in transferring the image
point from one local area to another. We say that when the image point
has remained too long in a giver, local area, a large saccade is likely
to occur and the probability of the large saccade occurring increases
with the time of stay within a local area. Let us set limits of a given
local area, as

—a< 0<+a .

The idea of an increased probability of the large saccade as a
function of trrie spent in a local area has a physiological basis. Pre-
sumably neural adaptation increases as a function of the time spent
in a local area thereby increasing the utility of switching to a new
local area.

When the large saccade occurs and the image point is trans-
ferred to another local area, we assume that to all intents, the image
point starts moving from the foveal axis, i.e., from the initial point
9 0 = 0 again. The whole process therefore is repeated again till the
next large saccade occurs. So we can safely say that at t = 0, a
large saccade has occurred and the 00 is set to zero from this time
onwards. Let us say that the probability for the next large saccade
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to occur is given by p(a,t) at any time, t, given that one has occurred

at t = 0, where we assume that p(a,t) is given as:

a
(26) p(a, t) = 1 —	 n (8, t)d 0.

•a

Note that p(a,t) will increase with time thereby increasing the likeli-

hood of a large saccade as desired. This is a very simplified assump-

tion and reveals that the occurrence of large saccades form a renewal

process, with p(a,t) as the renewal density. Once we have this re-

newal function, the product density h(t) , introduced by Ramakrisrula

[ 191, of the large saccade occurring at any time, t, is given by

t

(27) h(t) = p(a, t) +[ p(a, T)h(t —T)dT

0

N
Taking Laplace transforms on both sides, w.; h Ne for h(s), where

N	
Co

(28) h(s) =	 h(t)e—st dt

the expression

NN
(29) h (s)

1 — p (s)

Thus we have the product density for the occurrence of the large saccade

from which it is easy to calculate the mean and moments of the number

of large saccades that occur within a time 0 to T. The mean of the

number of times that changes of local areas occur in T seconds is

given by
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T
(30) < N(T) > =	 h(t)dt

0

and mean square by

T	 fT 
T 

f,
(31) < N2 (T) > =	 h(t)dt +	 h(t1)h(t2—tI)dt1dt2

0	 0 0

These quantities can be experimentally checked and the validity of the
stochastic model described above may be estimated.

V. Ex perimental Data and Results
In order to validate the model predictions made in Section III,

we must first know the statistics of the two driving inputs G 1 (t) the
tremor, and G2 (t), the point process representing the microsaccades.
This means that we must find the values of D (min2 /sec.),  the co-
variance of G 1 , X (1/sec.) the poisson intensity of microsaccade oc-

currences and an expression for cp(y), the p.d.f. of the microsaccade
amplitudes. Unfortunately, for humans, we have no way of acquiring
this information directly from measurements on G 1 (t) and G2(t).

Hence, our only recourse is to use the only available data, namely,
the time records of eye movements during fixation.

A typical example of eye movement data during fixation is
shown in Fig. 5. This data was acquired by means of a reflection
technique utilizing infrared light and a bridge circuit with photo-
diodes [20,21].

In the figure, large saccades that separate periods of local
area activity are indicated. During the local area activity micro-
saccadic transients and smooth eye movement (physiological drift)

are evident. Most of the tremor component of eye movements are
not visible. This is because these tiny oscillations are in the noise
level of this recording technique, accurate to + 15 seconds of arc.

The components in the data, 6(t), corresponding to the tremor and
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microsaccade driving inputs are separated by appropriate digital filter-
ing. The data sampling rate was 60 samples per second and the mini-
mum velocity threshold for editing the microsaccades was set at 300
minutes of arc per second. This precluded the measurement (or
editing) of microsaccades of amplitudes smaller than 5 minutes of
arc. In Fig. 6 an amplitude histogram for the microsaccades is pre-
sented. In constructing this histogram we have combined the data for
right and left microsaccades; this is satisfactory since we are assum-
ing left-right symmetry in the data. As mentioned earlier the smallest
amplitude measured is 5 minutes of arc. However, data from Beeler
[221 indicate that the frequency of occurrence of the microsaccades
decreases for amplitudes less than 10 minutes of arc, instead of 5
minutes of arc. Also, as might be expected from biological data,
this estimate reveals intersubject variation ranging from 5 to 10 min-
utes of arc. The histogram in Fig. 6 leads us to choose a bimodal
p.d.f. as in (23) for ep(y), the microsaccade amplitude p.d.f., with
the value of 0.1 (minutes — l ) assigned to a .

To evaluate X, the poisson intensity of the microsaccade oc-
currences, we need the intersaccadic interval histogram from data
as presented in Fig. 7. The interval histogram of Fig. 7 is not as
expected for a poisson process.

It indicates that the occurrences of microsaccades are not
independent as assumed earlier but in fact are correlated. A simi-
lar situation is seen with the effect of the absolute refractory period
in neural spike train interval histograms. Modifications of the theory
due to this fact will be presented in a future report. For the purpose
of this paper we assume a poisson process as a good approximation
to represent the microsaccade occurrences, and find that X is 3
(sec. —1

) .

The work of Beeler [22] provides measurements of tremor
amplitude as a function of frequency. From this data we can very
easily obtain the value for C 82(t) ]tremor' This quantity can now be
related to D, the covariance of C, by the expression:
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CO

J7	 ^	 1= 
2 rTj	 s +

CO
1	 ds— s + P)(32)
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D
2P

where P is the inverse time constant of the equivalent open - loop plant
of Fig. 4. Solving ( 32) for D gives it a value of 0.05265 minutest/
second.

Now we have all the parameter values needed to evaluate the
first two moments of 0(t) as given by (25) . The upper bounds for
values of these moments are given by the expressions

< 0 (t) > u = 0

(33)
m

where m2 = 2 for P(y) as in (23) . Substituting for D, (3, X and r in
(33)we get: OL

< 8(t)>u =0

(34)
< 02 (t) > u 24 (minute)t

or a root mean square value of the movement of approximately 5 min-
utes. Preliminary estimates from our data give root mean square
values for 0 (t) between 3 to 11 minutes with an average of 7 minutes.
This is within the expected range of the predicted value of 5 minutes.

VI. Conclusions
We have considered here a very simplified model of the eye

movements during fixation on a target. The concept of local area
movements of the image point and the transference of local areas
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from time to time by the occurrence of large saccades are the central

features of the model. The random movements inside each local area

are caused by the jump processes called microsaccades, the high fre-

quency tremor noise, and the compensatory drift. The p. d. f. rr (0, t)

governing these local area wanderings can be obtained from equation

(10) of the text. Numerical inversion of the fourier transform rr(w,t)

is being carried out. Even without obtaining the inverse transform,

we are able to evaluate the moments of the displacements within each

local area by the use of the theorem stated in Sec. III, equation (25).

From the experimental data presented in Sec. V, the standard devia-

tion for such motions arrived at from this model is of the order of 5

minutes of arc which checks favorably with the actual experimental

data. The renewal density of the large saccades is arrived at by a

simple criterion. The Laplace transform of the product density of

the occurrence of large saccades is obtained in equation (29) . Nu-

merical inversion of the transforms and the calculation of the mean

and moments of the number of large saccades occurring in a given

time are in progress. Sophistications of this model incorporating

more realistic criteria for the occurrence of large saccades, and

the microsaccades will be reported in a later contribution. Several

extensions of this work are planned. The first involves modifications

in our analyses to allow for eye movements in two dimensions; the

second is an appropriate iteration of our model to describe eye move-

ments during continuous visual tracking tasks; and the third concerns

applications of this approach to other related topics.

We are also planning a careful reassessment of the local area

hypothesis from measurements of vertical as well as horizontal eye

movements. The local area hypothesis involves a specialized part

of the retina, the fovea, which is used to process visual images;

furthermore at any one time only a portion of the fovea, a local area,

receives the target image. The implication of this model is that the

fovea has a uniform visual acuity and hence all parts of the fovea

have equal likelihood of being chosen as the next local area. This,

in fact, is not the case because visual acuity is at a maximum at

1 e}
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the center of the fovea and decays to a tenth of this value at the edge

of the fovea. This suggests that the spatial distribution of the local

areas within the fovea might well be dependent on such a feature.

It was assumed in Sec. IV that a transition from one local

area to another is such that the reference point for the new local

area coincides with the position of the image point at the termina-

tion of the large saccade. This allowed us to take 0 0 = 0 as the

initial condition prior to start of motion within a local area. In

reality, however, this hypothesis does not hold strictly and a0

must be assumed to be a random variable with some a priori p. d . f .

p(0 O ) . A suitable modification to our analysis is thus warranted.

Finally, in extending the model to tracking tasks it will be

necessary to replace Robinson's model [15] for the plant by a more

appropriate nonlinear model such as the one proposed by Cook and

Stark C1?]. Applications of the approach taken in this paper seem

plausible in allied fields such as neurophysiology and communica-

tions theory.

i
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